bAdly tItled Mock contEst

YEA BIG
17 Jan. 2021 Have fun!

§0 Problems

1. Find the value of $6 \sqrt[3]{\left(2^{9}+2^{1}-24\right)\left(2^{9}-2^{2}+192\right)}$.
2. A four-digit integer $A B C D$ (with $A \neq 0$) is said to be balanced if $A+B=C+D$. Find the number of balanced four-digit integers.
3. On a whiteboard in an empty classroom, there is a 3 -digit number $\underline{a b c}$ written down in base $x: \underline{a b c} x$. The first student, Albert, comes in, and correctly converts this number to $\underline{633}_{10}$. Albert then decides to erase his answer and the base of the original problem, and replaces it with $x+1$ before leaving. Next, Bob comes into the room and correctly converts the new number $\frac{a b c_{x+1}}{}$ to $\underline{750}_{10}$. Like Albert, he decides to erase his answer, but instead replaces the base of the original problem with $x+2$. Finally, Charlie comes in the room. He correctly converts the existing number $\underline{a b c}_{x+2}$ to $\underline{877}_{10}$. Find $\underline{a b c} 10-x$.
(The notation $\underline{a_{1} \ldots a_{n}} m$ denotes the number $\underline{a_{1} \ldots a_{n}}$ base m, as opposed to $a_{1} \cdot a_{2} \cdots a_{n}$.)
4. In quadrilateral $A B C D, \angle A=\angle B=\angle C=75^{\circ}$, and $B C=2$. The infimal and supremal lengths of $A B$ are $\sqrt{a}-\sqrt{b}$ and $\sqrt{c}+\sqrt{d}$ respectively, for positive integers a, b, c, d. Find $a+b+c+d$.
(The infimum and supremum of a variable quantity are its greatest lower and least upper bounds, respectively.)
5. For each positive integer n, let the roots of quadratic equation $x^{2}+(2 n+1) x+n^{2}=0$ be r_{n} and s_{n}. Given that

$$
\sum_{n=3}^{20} \frac{1}{\left(1+r_{n}\right)\left(1+s_{n}\right)}=a / b
$$

for some relatively prime positive integers a, b, find the remainder when $a+b$ is divided by 1000 .
6. Determine the number of noncongruent right triangles with integral sides $a, b, c<1000$ satisfying the following conditions:

- One of the legs is even, and it is 1 less than the hypotenuse;
- $\operatorname{gcd}(a, b, c)=1$.

7. A number is said to be mountainous if its digits strictly increase to a peak then strictly decrease, and all digits are non-zero. For instance, 12321 is a mountainous number, but 12331 and 12435 are not. If k is the number of distinct five-digit mountainous numbers, find the remainder when k is divided by 1000 .
Clarification: The peak cannot occur at the first or last digit. For instance 12579 and 85432 are not regarded as mountainous.
8. Find the number of distinct integers $1 \leq n \leq 1000$ expressible as $x^{3}+y^{3}+z^{3}-3 x y z$ for some positive integers x, y, z.
9. Benjamin makes 10 different cards, on each of which he writes two different numbers from $\{1,2,3,4,5\}$. He distributes these cards into 5 plates numbered 1 through 5 , such that a card can only be put into a correspondingly numbered plate-for example, the card with the numbers 3 and 5 written on it can be put into either plate 3 or plate 5 . Benjamin considers an arrangement good if plate 1 contains more cards than any of the other four plates. Find the number of good arrangements.
10. In triangle $A B C$, the bisector of $\angle B A C$ meets side $B C$ at point D, with $B D / D C=2 / 3$. If $\angle A D B=60^{\circ}$, then $(A B+A C) / B C=\sqrt{a}$ for some positive integer a. Find a.
11. Find the nûmber of ordered n-tuples of integers $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ such that

$$
\begin{aligned}
& \sum_{m=1}^{n} k_{m}=5 n-4, \text { and } \\
& \sum_{m=1}^{n} \frac{1}{k_{m}}=1
\end{aligned}
$$

12. Alice and Bob are playing a game with 4 stacks of coins with a, b, c, d coins, respectively, with no three piles equal. The players take turns moving alternately, with Alice going first. On each move, the player chooses two non-empty stacks. Suppose they (currently) have x and y coins, in either order. Then, the player removes $\min (x, y)$ coins from both stacks. The player unable to move loses. If $a=300$ and Bob has a winning strategy, find the minimum value of $b+c+d$.
13. In triangle $A B C$, with $\angle A=50^{\circ}$, let point D be the midpoint of $\overline{B C}$. Points E, F are $\overline{A C}, \overline{A B}$ respectively, so that $C E=B F=B C / 2$. Let I be the incenter of $\triangle A B C$, and $(B F I)^{*}$ and $(C E I)$ intersect at a point $P \neq I$. If $A E-A F=216$, find $P D$.
14. Let δ be the set of all integers x such that $0<x<167$ and there exists an integer k such that $k^{2} \equiv x+2$ $(\bmod 167)$. Let N be the product of all elements of δ. What is the remainder when N is divided by 167 ?
15. Let acute $\triangle A B C$ have orthocenter H. Let D, E, F be the feet of the altitudes from A, B, C respectively. Let $B D=3 / 2, C D=11 / 2$, and $\bar{A} H=17 / \sqrt{15}$. Point P lies on $\overline{E F}$ such that $\overline{P A} \| \overline{B C}$. If the tangent from P to $(A E F)$ not parallel to $\overline{B C}$ meets the median from A at K, and $\overline{H K}$ meets line $E F$ at X, then $B X$ is expressible as a / b for relatively prime positive integers a, b. Compute $a+b$.

[^0]
[^0]: ${ }^{*}\left(A_{1} \ldots A_{n}\right)$ denotes the circumcircle of cyclic polygon $\left(A_{1} \ldots A_{n}\right)$.

