Revenge ELMO 2023: wateRELMOn

Rookie MOPpers

June 2023

No comment, just see below :P

- ELMO Revenge Committee 2023

40 Problems

0.1 Warm-up

For originality purposes we introduce the concept of an official warm-up:
Problem O. In triangle $A B C$, let X be the symmedian point. Find the range of all possible values of $\angle B X C$ given
(a) $A B C$ is an acute triangle.
(b) $A B C$ is an obtuse triangle.

0.2 Actual pset

Problem 1. In cyclic quadrilateral $A B C D$ with circumcenter O and circumradius R, define $X=\overline{A B} \cap \overline{C D}, Y=$ $\overline{A C} \cap \overline{B D}$, and $Z=\overline{A D} \cap \overline{B C}$. Prove that

$$
O X^{2}+O Y^{2}+O Z^{2} \geq 2 R^{2}+2[A B C D] .
$$

Problem 2. On an infinite square grid, Gru and his 2022 minions play a game, making moves in a cyclic order with Gru first. On any move, the current player selects 2 adjacent cells of their choice, and paints their shared border. A border cannot be painted over more than once. Gru wins if after any move there is a 2×1 or 1×2 subgrid with its border (comprising of 6 segments) completely colored, but the 1 segment inside it uncolored. Can he guarantee a win?

Problem 3. Determine all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\left(\sum_{\text {cyc }} f(x)\right)\left(\sum_{\text {cyc }} x f(y)\right)>\prod_{\text {cyc }}(f(x)+y)
$$

for all $x, y, z \in \mathbb{R}^{+}$. (Here, $\sum_{\text {cyc }} g(x, y, z)$ is shorthand for $g(x, y, z)+g(y, z, x)+g(z, x, y)$.)
Problem 4. On a 5×5 grid $c A$ of integers, each with absolute value $<10^{9}$, define a flip to be the operation of negating each element in a row / column with negative sum. For example, $(-1,-4,3,-4,1) \rightarrow(1,4,-3,4,-1)$. Determine whether there exists an \mathcal{A} so that it's possible to perform 90 flips on it.

Problem 5. Complex numbers a, b, w, x, y, z, p satisfy

$$
\begin{aligned}
\frac{(x-w)|a-w|}{(a-w)|x-w|} & =\text { (cyclic variants); } \\
\frac{(z-w)|b-w|}{(b-w)|z-w|} & =\text { (cyclic variants); } \\
p & =\frac{\sum_{\text {cyc }} \frac{w}{|p-w|}}{\sum_{\mathrm{cyc}} \frac{1}{|p-w|}}
\end{aligned}
$$

where cyclic sums, equations, etc. are wrt w, x, y, z. Prove that there exists a real k such that

$$
\sum_{\text {cyc }} \frac{(x-w)|a-w|}{|p-w||x-w|}=k \sum_{\text {cyc }} \frac{(z-w)|b-w|}{|p-w||z-w|}
$$

Note. In place of this box, a picture of Elmo on fire was supposed to go here instead, but to save ink, we omit it in the printed copies.

