Proposal Compilation- Version Public

Nyan
January 18, 2023

Remark. Version Private... you may have seen some of those.
Public proposals aren't that great because they're from 202I, when I didn't have that many math ideas, sorry...

Contents

0 Problems 2
1 Solutions 3
1.1 External regular polygons (OMMC Sample 2023/2/3) 3
1.2 Elaborate 69 joke (unused) 4
1.3 Monge spam be like... (YEMO 3), 5
1.4 Harmonic quad amerigeo (Mock AIME 2023/6) 6
1.5 60-deg anti-prob (Mock AIME 2023/9) 7

40 Problems

Problem 1 (OMMC Sample 2023/2/3). In acute triangle $A B C$, equilateral triangle $A B X$ and regular hexagon $B C P Q R S$ are externally constructed on their respective sides. Let line $X P$ intersect $\overline{A B}, \overline{B C}$, and $\overline{A R}$ at Y, Z, K, respectively. Prove that $\overline{A Z}, \overline{B K}, \overline{C Y}$ are concurrent.

Problem 2. Let

$$
S=\sum_{n=0}^{\infty} \sum_{k=0}^{n}(-1)^{k}\binom{2 k}{k}(n-k+1) 2^{-n-3 k} .
$$

What is S^{2} ?
Remark. Unused for negative quality reasons.

Problem 3 (YEMO 3). Variable triangles $A B C$ and $D E F$ share a fixed incircle ω and circumcircle Ω. Let ω_{a} be the A-mixtilinear incircle in $\triangle A B C$, and similarly for ω_{d}. Determine (as the triangles vary) the locus of the intersection of the common external tangents to these two circles.

Problem 4 (Mock AIME 2023/6). | In cyclic quadrilateral $A B C D$ with $A B \cdot C D=A D \cdot B C$, let point P be on $\overline{B D}$ that the perpendicular line to $\overline{A C}$ from P is concurrent with the bisectors of $\angle B, \angle D$ at some point T. If $T B=5, T D=4$, and $T P=11$, what is $B D$?

Problem 5 (Mock AIME 2023/9). In (convex) cyclic quadrilateral $A B C D$ with circumcenter O and diagonals $A C, B D=\sqrt{78}$, 13 respectively, we have $B C=C D$. Let the circumcenter P of $\triangle O A C$ lie on $\overline{B D}$. If the perpendicular from P to $\overline{A C}$ meets the circumcircle of $\triangle O B D$ at a point X on the opposite side of $\overline{A C}$ as P, then $B X / D X=$ $(a-\sqrt{b}) / c$ for some positive integers a, b, c with $\operatorname{gcd}(a, b, c)=1$. Find $a+b+c$.

11 Solutions

1.1 External regular polygons (OMMC Sample 2023/2/3)

https://www.ommcofficial.org/sample

In acute triangle $A B C$, equilateral triangle $A B X$ and regular hexagon $B C P Q R S$ are externally constructed on their respective sides. Let line $X P$ intersect $\overline{A B}, \overline{B C}$, and $\overline{A R}$ at Y, Z, K, respectively. Prove that $\overline{A Z}, \overline{B K}, \overline{C Y}$ are concurrent.

Extend lines $X P, B K$ to meet line $A C$ at points M, N, respectively. Then, we have,

Claim - $(A C ; M N)=-1$.

Proof. First, because rotations are spiral similarities, and $\overline{A R}, \overline{X P}$ are related by a $\pi / 3$ one, K is also the second intersection of $(A B X)$ and $(B P R)$ distinct from B, that is, the second intersection of the circumcircles of the two regular polygons.
Due to this we have $\angle A K C=2 \pi-\angle A K B-\angle B K C=\pi / 2$.
Now we obtain $\angle N K C=\pi-\angle B K C=\pi / 6$, and $\angle M K C=\angle P K C=\pi / 6$, and $\overline{C K}$ bisects $\angle M K N$. By a well-known lemma the claim is proven.

Now Ceva-Menelaus in reverse finishes the problem.
Remark. This problem was made in May '21, actually...

4.2 Elaborate 69 joke (unused)

Let

$$
S=\sum_{n=0}^{\infty} \sum_{k=0}^{n}(-1)^{k}\binom{2 k}{k}(n-k+1) 2^{-n-3 k} .
$$

What is S^{2} ?

The sum can be rewritten as

$$
S=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left((-1)^{k}\binom{2 k}{k} 2^{-4 k}\right)\left(2^{-(n-k)}\binom{n-k+2}{2}\right) .
$$

Seeing the convolution, we do a second rewrite:

$$
S=\left(\sum_{a=0}^{\infty}(-1)^{k}\binom{2 k}{k} 2^{-4 k}\right)\left(\sum_{b=0}^{\infty} 2^{-b}\binom{b+2}{2}\right) .
$$

The first sum above evaluates as follows:

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-1)^{n}\binom{2 n}{n} 2^{-4 n} & =\sum_{n=0}^{\infty}(-1 / 4)^{n}\binom{2 n}{n}(1 / 4)^{n} \\
& =\sum_{n=0}^{\infty}\binom{-1 / 2}{n}(1 / 4)^{n} \\
& =(1+1 / 4)^{-1 / 2}=(2 / \sqrt{5}) ;
\end{aligned}
$$

(The last line follows by the binomial theorem.)
The second sum is easier:

$$
\begin{aligned}
\sum_{n=0}^{\infty}\binom{n+2}{2} 2^{-n} & =\sum_{n=0}^{\infty}\binom{-2}{n}(-1 / 2)^{n} \\
& =(1-1 / 2)^{-2}=(4)
\end{aligned}
$$

Multiplying these sums together gives

$$
S=(2 / \sqrt{5})(4)=8 / \sqrt{5} \Rightarrow S^{2}=64 / 5 .
$$

Remark. We use generalized binomial coefficients. Some alg-manip yields $\binom{-1 / 2}{n}=(-1 / 4)^{n}\binom{2 n}{n}$ as used in the computation.

Remark. Made in December 202 I .

1.3 Monge spam be like... (YEMO 3)

https://unity858.github.io/yea/yemo-2022.html
Variable triangles $A B C$ and $D E F$ share a fixed incircle ω and circumcircle Ω. Let ω_{a} be the A-mixtilinear incircle in $\triangle A B C$, and similarly for ω_{d}. Determine (as the triangles vary) the locus of the intersection of the common external tangents to these two circles

Let the mixtilinears touch Ω at T_{a}, T_{d}, and let K, X denotes the exsimilicenters of (Ω, ω) (fixed) and (ω_{a}, ω_{d}), the desired. Applying Monge to all possible triplets out of the four circles implies that $K=\overline{A T_{a}} \cap \overline{D T_{D}}$ while $X=\overline{A D} \cap \overline{T_{a} T_{d}}$. By Brokard, it follows that X lies on the polar of K wrt Ω, a fixed line.

1.4 Harmonic quad amerigeo (Mock AIME 2023/6)

https://unity858.github.io/yea/
In cyclic quadrilateral $A B C D$ with $A B \cdot C D=A D \cdot B C$, let point P be on $\overline{B D}$ that the perpendicular line to $\overline{A C}$ from P is concurrent with the bisectors of $\angle B, \angle D$ at some point T. If $T B=5, T D=4$, and $T P=11$, what is $B D$?

By angle bisector theorem we know that $T \in \overline{A C}$.

Claim - $\overline{T P}$ is tangent to $(B D T)$.

Proof. Draw the circles ω_{b}, ω_{d} tangent to $\overline{A C}$ at T and $(A B C D)$ at B, D respectively. Their radical center $X=$ $\overline{B B} \cap \overline{D D} \cap \overline{A C}$ is also the circumcircle of $\triangle B D T$. As $\overline{X A C} \perp \overline{T P}$, the claim follows.

Since $\frac{P B}{P T}=\frac{5}{4}$ and $\frac{P D}{P T}=\frac{4}{5}$, we have

$$
B D=\frac{9}{20} P T=\frac{99}{20} .
$$

* 1.5 60-deg anti-prob (Mock AIME 2023/9)

https://unity858.github.io/yea/
In (convex) cyclic quadrilateral $A B C D$ with circumcenter O and diagonals $A C, B D=\sqrt{78}, 13$ respectively, we have $B C=C D$. Let the circumcenter P of $\triangle O A C$ lie on $\overline{B D}$. If the perpendicular from P to $\overline{A C}$ meets the circumcircle of $\triangle O B D$ at a point X on the opposite side of $\overline{A C}$ as P, then $B X / D X=(a-\sqrt{b}) / c$ for some positive integers a, b, c with $\operatorname{gcd}(a, b, c)=1$. Find $a+b+c$.

For brevity let ℓ be the perpendicular bisector of $\overline{A C}$ aka the perpendicular from P to $\overline{A C}$.
Claim - $\angle B O D=120^{\circ}$.

Proof. Observe that P lies on $\overline{B D}$ and the perpendicular bisector of $\overline{O C}$ which are supposed to be parallel. Thus the two mentioned lines are coincident which implies the result.

Lemma 1 - In triangle $A B C$ with $\angle A=60^{\circ}$, circumcenter O, and orthocenter $H, A H=A O$.

Proof. Omitted.

Claim 2 - X is the orthocenter of $\triangle A B D$.

Proof. Proceed by phantom points, letting H be the desired orthocenter; then

$$
\measuredangle B H D=60^{\circ}=\measuredangle B O D \Rightarrow H \in(O B D)
$$

Meanwhile (by design) C, A are the circumcenter and orthocenter of $\triangle H B D$ so lemma 1 means $H A=H C$ or $H \in \ell$. By design $H=X$.

Lemma 2 - In a triangle with sides a, b, c, circumradius R, circumcenter O and orthocenter H,

$$
O H^{2}=9 R^{2}-\left(a^{2}+b^{2}+c^{2}\right)
$$

Proof. Also omitted.
Now we extract the answer; in some awful notation, let $B H=u, D H=v$. Combine lemma 2 on $\triangle H B D$ with $B D^{2}=u^{2}-u v+v^{2}$ (law of cosines) to obtain $A C^{2}=(u-v)^{2}$ and thus the system

$$
\begin{aligned}
(u-v)^{2} & =A C^{2}=78 \\
u^{2}-u v+v^{2} & =B D^{2}=169
\end{aligned}
$$

Homogenizing yields

$$
13(u-v)^{2}=6\left(u^{2}-u v+v^{2}\right) \Rightarrow 7 u^{2}-20 u v+7 v^{2}=0 \Rightarrow \frac{u}{v}=\frac{10 \pm \sqrt{51}}{7} \Rightarrow 068
$$

Remark. Made in May 2022.

