Proposal Compilation – Version Public

Nyan

January 18, 2023

Remark. Version Private... you may have seen some of those.

Public proposals aren't that great because they're from 2021, when I didn't have that many math ideas, sorry...

Contents

0	Prob	blems	2
1	Solutions		3
	1.1	External regular polygons (OMMC Sample 2023/2/3)	3
	1.2	Elaborate 69 joke (unused)	4
	1.3	Monge spam be like (YEMO 3)	5
	1.4	Harmonic quad amerigeo (Mock AIME 2023/6)	6
	1.5	60-deg anti-prob (Mock AIME 2023/9)	7

↓0 Problems

Problem 1 (OMMC Sample 2023/2/3). In acute triangle *ABC*, equilateral triangle *ABX* and regular hexagon *BCPQRS* are externally constructed on their respective sides. Let line *XP* intersect \overline{AB} , \overline{BC} , and \overline{AR} at *Y*, *Z*, *K*, respectively. Prove that \overline{AZ} , \overline{BK} , \overline{CY} are concurrent.

Problem 2. Let

$$S = \sum_{n=0}^{\infty} \sum_{k=0}^{n} (-1)^{k} \binom{2k}{k} (n-k+1)2^{-n-3k}.$$

What is S^2 ?

Remark. Unused for negative quality reasons.

Problem 3 (YEMO 3). Variable triangles *ABC* and *DEF* share a fixed incircle ω and circumcircle Ω . Let ω_a be the *A*-mixtilinear incircle in $\triangle ABC$, and similarly for ω_d . Determine (as the triangles vary) the locus of the intersection of the common external tangents to these two circles.

Problem 4 (Mock AIME 2023/6). * In cyclic quadrilateral *ABCD* with $AB \cdot CD = AD \cdot BC$, let point *P* be on \overline{BD} that the perpendicular line to \overline{AC} from *P* is concurrent with the bisectors of $\angle B$, $\angle D$ at some point *T*. If TB = 5, TD = 4, and TP = 11, what is *BD*?

Problem 5 (Mock AIME 2023/9). In (convex) cyclic quadrilateral *ABCD* with circumcenter *O* and diagonals $AC, BD = \sqrt{78}, 13$ respectively, we have BC = CD. Let the circumcenter *P* of $\triangle OAC$ lie on \overline{BD} . If the perpendicular from *P* to \overline{AC} meets the circumcircle of $\triangle OBD$ at a point *X* on the opposite side of \overline{AC} as *P*, then $BX/DX = (a - \sqrt{b})/c$ for some positive integers *a*, *b*, *c* with gcd(*a*, *b*, *c*) = 1. Find a + b + c.

^{*}https://unity858.github.io/yea/

41 Solutions

1.1 External regular polygons (OMMC Sample 2023/2/3)

https://www.ommcofficial.org/sample

In acute triangle *ABC*, equilateral triangle *ABX* and regular hexagon *BCPQRS* are externally constructed on their respective sides. Let line *XP* intersect \overline{AB} , \overline{BC} , and \overline{AR} at *Y*, *Z*, *K*, respectively. Prove that \overline{AZ} , \overline{BK} , \overline{CY} are concurrent.

Extend lines XP, BK to meet line AC at points M, N, respectively. Then, we have,

Claim – (AC; MN) = -1.

Proof. First, because rotations are spiral similarities, and \overline{AR} , \overline{XP} are related by a $\pi/3$ one, K is also the second intersection of (ABX) and (BPR) distinct from B, that is, the second intersection of the circumcircles of the two regular polygons.

Due to this we have $\angle AKC = 2\pi - \angle AKB - \angle BKC = \pi/2$. Now we obtain $\angle NKC = \pi - \angle BKC = \pi/6$, and $\angle MKC = \angle PKC = \pi/6$, and \overline{CK} bisects $\angle MKN$. By a well-known lemma the claim is proven.

Now Ceva-Menelaus in reverse finishes the problem.

Remark. This problem was made in May '21, actually...

1.2 Elaborate 69 joke (unused)

Let

$$S = \sum_{n=0}^{\infty} \sum_{k=0}^{n} (-1)^k \binom{2k}{k} (n-k+1)2^{-n-3k}$$

What is S^2 ?

The sum can be rewritten as

$$S = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \left((-1)^{k} \binom{2k}{k} 2^{-4k} \right) \left(2^{-(n-k)} \binom{n-k+2}{2} \right).$$

Seeing the convolution, we do a second rewrite:

$$S = \left(\sum_{a=0}^{\infty} (-1)^{k} \binom{2k}{k} 2^{-4k}\right) \left(\sum_{b=0}^{\infty} 2^{-b} \binom{b+2}{2}\right).$$

The first sum above evaluates as follows:

$$\sum_{n=0}^{\infty} (-1)^n \binom{2n}{n} 2^{-4n} = \sum_{n=0}^{\infty} (-1/4)^n \binom{2n}{n} (1/4)^n$$
$$= \sum_{n=0}^{\infty} \binom{-1/2}{n} (1/4)^n$$
$$= (1+1/4)^{-1/2} = (2/\sqrt{5});$$

(The last line follows by the binomial theorem.)

The second sum is easier:

$$\sum_{n=0}^{\infty} {\binom{n+2}{2}} 2^{-n} = \sum_{n=0}^{\infty} {\binom{-2}{n}} (-1/2)^n$$
$$= (1-1/2)^{-2} = (4);$$

Multiplying these sums together gives

$$S = (2/\sqrt{5})(4) = 8/\sqrt{5} \Rightarrow S^2 = 64/5.$$

Remark. We use generalized binomial coefficients. Some alg-manip yields $\binom{-1/2}{n} = (-1/4)^n \binom{2n}{n}$ as used in the computation.

Remark. Made in December 2021.

\$ 1.3 Monge spam be like... (YEMO 3)

https://unity858.github.io/yea/yemo-2022.html

Variable triangles *ABC* and *DEF* share a fixed incircle ω and circumcircle Ω . Let ω_a be the *A*-mixtilinear incircle in $\triangle ABC$, and similarly for ω_d . Determine (as the triangles vary) the locus of the intersection of the common external tangents to these two circles.

Let the mixtilinears touch Ω at T_a , T_d , and let K, X denotes the exsimilicenters of (Ω, ω) (fixed) and (ω_a, ω_d) , the desired. Applying Monge to all possible triplets out of the four circles implies that $K = \overline{AT_a} \cap \overline{DT_D}$ while $X = \overline{AD} \cap \overline{T_aT_d}$. By Brokard, it follows that X lies on the polar of K wrt Ω , a fixed line.

1.4 Harmonic quad amerigeo (Mock AIME 2023/6)

https://unity858.github.io/yea/

In cyclic quadrilateral *ABCD* with $AB \cdot CD = AD \cdot BC$, let point *P* be on \overline{BD} that the perpendicular line to \overline{AC} from *P* is concurrent with the bisectors of $\angle B$, $\angle D$ at some point *T*. If TB = 5, TD = 4, and TP = 11, what is *BD*?

By angle bisector theorem we know that $T \in \overline{AC}$.

```
Claim – \overline{TP} is tangent to (BDT).
```

Proof. Draw the circles ω_b, ω_d tangent to \overline{AC} at T and (ABCD) at B, D respectively. Their radical center $X = \overline{BB} \cap \overline{DD} \cap \overline{AC}$ is also the circumcircle of $\triangle BDT$. As $\overline{XAC} \perp \overline{TP}$, the claim follows. \Box

Since $\frac{PB}{PT} = \frac{5}{4}$ and $\frac{PD}{PT} = \frac{4}{5}$, we have

$$BD = \frac{9}{20}PT = \boxed{\frac{99}{20}}.$$

\$ 1.5 60-deg anti-prob (Mock AIME 2023/9)

https://unity858.github.io/yea/

In (convex) cyclic quadrilateral *ABCD* with circumcenter *O* and diagonals *AC*, *BD* = $\sqrt{78}$, 13 respectively, we have *BC* = *CD*. Let the circumcenter *P* of $\triangle OAC$ lie on \overline{BD} . If the perpendicular from *P* to \overline{AC} meets the circumcircle of $\triangle OBD$ at a point *X* on the opposite side of \overline{AC} as *P*, then $BX/DX = (a - \sqrt{b})/c$ for some positive integers *a*, *b*, *c* with gcd(*a*, *b*, *c*) = 1. Find *a* + *b* + *c*.

For brevity let ℓ be the perpendicular bisector of \overline{AC} aka the perpendicular from P to \overline{AC} .

Claim – $\angle BOD = 120^{\circ}$.

Proof. Observe that *P* lies on \overline{BD} and the perpendicular bisector of \overline{OC} which are supposed to be parallel. Thus the two mentioned lines are coincident which implies the result.

Lemma 1 - In triangle *ABC* with $\angle A = 60^\circ$, circumcenter *O*, and orthocenter *H*, AH = AO.

Proof. Omitted.

Claim 2 – X is the orthocenter of $\triangle ABD$.

Proof. Proceed by phantom points, letting *H* be the desired orthocenter; then

$$\measuredangle BHD = 60^\circ = \measuredangle BOD \Longrightarrow H \in (OBD).$$

Meanwhile (by design) *C*, *A* are the circumcenter and orthocenter of $\triangle HBD$ so lemma 1 means HA = HC or $H \in \ell$. By design H = X.

Lemma 2 - In a triangle with sides *a*, *b*, *c*, circumradius *R*, circumcenter *O* and orthocenter *H*,

$$OH^2 = 9R^2 - (a^2 + b^2 + c^2).$$

Proof. Also omitted.

Now we extract the answer; in some awful notation, let BH = u, DH = v. Combine lemma 2 on $\triangle HBD$ with $BD^2 = u^2 - uv + v^2$ (law of cosines) to obtain $AC^2 = (u - v)^2$ and thus the system

$$(u - v)^2 = AC^2 = 78;$$

 $u^2 - uv + v^2 = BD^2 = 169;$

Homogenizing yields

$$13(u-v)^{2} = 6(u^{2} - uv + v^{2}) \Rightarrow 7u^{2} - 20uv + 7v^{2} = 0 \Rightarrow \frac{u}{v} = \frac{10 \pm \sqrt{51}}{7} \Rightarrow \boxed{068}$$

Remark. Made in May 2022.