HMMT Team Livesolve/TEX?

Neal Yan

YEA MASSIVE (12 Nov. 2021)

```
Problem 1
Each person in Cambridge drinks a (possibly different) 12 ounce mixture of water and apple juice, where each drink has a positive amount of both liquids. Marc McGovern, the mayor of Cambridge, drinks \(1 / 6\) of the total amount of water drunk and \(1 / 8\) of the total amount of apple juice drunk. How many people are in Cambridge?
```

Let total water and juice be w, j respectively; let there be $n \mathrm{ppl}$ present.

$$
\begin{array}{r}
w / 6+j / 8=12 \\
w+j=12 n
\end{array}
$$

Hence $4 w+3 j=288$.

$$
\begin{gathered}
\Rightarrow w=288-3(12 n)=288-36 n ; \\
\Rightarrow j=12 n-w=48 n-288 ;
\end{gathered}
$$

Because $w, j>0,36 n<288<48 n$, whence $6<n<8$ and $n=7$.

Problem 2
 2019 students are voting on the distribution of N items. For each item, each student submits a vote on who should receive that item, and the person with the most votes receives the item (in case of a tie, no one gets the item). Suppose that no student votes for the same person twice. Compute the maximum possible number of items one student can receive, over all possible values of N and all possible ways of voting.

Observe that a winner of an item must necessarily receive ≥ 2 votes to win an item. Furthermore, a vote from each person (inc. self) can only be 'used' once. There are 2019 potential votes.
Hence answer $=\lfloor 2019 / 2\rfloor=1009$, the end.

Construction?

Obvious: just designate a person to win as much as possible, and pair the others up; have them vote for the designated person in those pairs, at distinct times.

Problem 3

The coefficients of the polynomial $P(x)$ are nonnegative integers, each less than 100. Given that $P(10)=331633$ and $P(-10)=273373$, compute $P(1)$.

Definition

Let the even and odd parts of any function $f(x)$ over \mathbb{R} be $[f(x)+f(-x)] / 2$ and $[f(x)-f(-x)] / 2$, respectively.

In given prob consider even and odd parts;
Even part: Call $Q ; Q(10)=(331633+273373) / 2=$ $302503=30 \cdot 10^{4}+25 \cdot 10^{2}+3 \cdot 10^{0}$;
Odd part: Call R; $R(10)=(331633-273373) / 2=29130=29 \cdot 10^{3}+13 \cdot 10^{1}$.
Hence one may verify that the poly
$P(x)=30 x^{4}+29 x^{3}+25 x^{2}+13 x+3$ works.
$P(1)$ is the sum of the coefficients, which (in this case, at least)
is $30+29+25+13+3=59+25+16=100$.

Problem 4

Two players play a game, starting with a pile of N tokens. On each player's turn, they must remove 2^{n} tokens from the pile for some nonnegative integer n. If a player cannot make a move, they lose. For how many N between 1 and 2019 (inclusive) does the first player have a winning strategy?

Obviously we are assuming optimal play. Define a winning config to be one in which the player who has to move first has a winning strategy. Call all other configs losing configs. Below we use engineer's induction. Data in table...

n	1	2	3	4	5	6
$\mathrm{~V} / \mathrm{X}$	V	V	X	V	V	X

(V and X are abbreviations for checkmark and X , because laziness ;-;)
Apparent that N is losing config iff $3 \mid N$. Hence, answer is \# of ints in $[1,2019]$ not div. by 3 , which is

$$
2019-\left\lfloor\frac{2019}{3}\right\rfloor=\frac{2}{3}(2019)=1346 .
$$

Problem 5

Compute the sum of all positive real numbers $x \leq 5$ satisfying

$$
x=\frac{\left\lceil x^{2}\right\rceil+\lfloor x\rfloor\lceil x\rceil}{\lfloor x\rfloor+\lceil x\rceil}
$$

So that we may assume $\lceil x\rceil=\lfloor x\rfloor+1$, we first tackle the trivial case of $x \in \mathbb{Z}$. When $x \in \mathbb{Z} \backslash\{0\}$ we get the trivial equation $x=\left(x^{2}+x \cdot x\right) /(x+x), \forall x>0$
This case gives us a subtotal of $1+2+3+4+5=$ [15]. (It is a personal habit of mine to put subtotals in brackets on scratch during math contests.)

P5 Nontrivial case

Let fractional part of x be $\{x\}$.
Rewrite orig. equation using $\lceil x\rceil=\lfloor x\rfloor+1$ and $x=\{x\}+\lfloor x\rfloor \ldots$

$$
\{x\}=\frac{\left\lceil x^{2}\right\rceil+\lfloor x\rfloor(\lfloor x\rfloor+1)}{2\lfloor x\rfloor+1}-\lfloor x\rfloor=\frac{\left\lceil x^{2}\right\rceil-\lfloor x\rfloor^{2}}{2\lfloor x\rfloor+1}
$$

Numerator $=1,2, \ldots 2\lfloor x\rfloor+1$
Fix floorx; $2\lfloor x\rfloor$ possible values, hence sum of int parts is $2\lfloor x\rfloor^{2}$.
Frac parts $\rightarrow(1+2+\cdots++2\lfloor x\rfloor) /(2\lfloor x\rfloor+1)=\lfloor x\rfloor$.
Subtotal $=\sum_{k=0}^{4} 2 k^{2}+k=3+10+21+36=[70]$.
Final ans $=15+70=85$

Problem 8

In $\triangle A B C$, the external angle bisector of $\angle B A C$ intersects line $B C$ at D. E is a point on ray $A C$ such that $\angle B D E=$ $2 \angle A D B$. If $A B=10, A C=12$, and $C E=33$, compute $D B$.

Ggb＇d diag

Solved with Aditya Chandrasekhar.
Reflect line $C D$ over line $A D$, giving us a $B^{\prime} \in \overline{C A}$. Then $D B / D E=D B^{\prime} / D E$ by sym.
Also observe that $\angle C D E=2 \angle C D A=\angle C D A+\angle A D B^{\prime}=\angle C D B^{\prime}$, also by sym. Hence $D B^{\prime} / D E=C B^{\prime} / C E$.
Finally, eval'ing $C B^{\prime}$:

$$
C B^{\prime}=C A+A B^{\prime}=C A+A B=22
$$

Hence $D B / D E=D B^{\prime} / D E=C B^{\prime} / C E=22 / 33=2 / 3$.

Post-meeting remarks

Well, what about the other problems?
Too cancerous imo... save your time ig. Plus no time left smhmh

