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Outline

Quite long indeed. Calculator helpful in computing to come, but not
strictly needed.
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In a nutshell

Note

To save time on behalf of any potential graders, let it be noted that §2 is
solids of revolution (semester 2& no calc), and §3 is related rates (semester
1& calc required). Apart from that the outline is a su�cient synopsis.
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Part within Calc BC curriculum

Gabriel's horn is the (in�nitely long) solid formed by rotating y = 1/x (for
x ≥ 1) about the x-axis.

I'll begin with the following routine exercise: what is its volume?

Volume

Directly computable via method taught in class:

V = π

∫ ∞
0

dx/x2 =
π

x

∣∣∣∣∞
x=1

= π.

Here, when we write f (±∞), we mean limx→±∞ f (x). Slight abuse of
notation but not at all fatal.
(If the said limit does not exist, then neither does the original integral.)
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Motivation for further investigation

Gabriel's horn is the most typical example of a solid with �nite volume but
in�nite surface area (henceforth SA for brevity). This should remind you of
the Koch snow�ake� �nite area, in�nite perimeter.

Artwork

Gabriel at left, Koch at right:
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The formula

Theorem

Revolve the curve y = f (x), x ∈ [a, b] about the x-axis. Then the resulting
surface has area

2π

∫ b

a

f (x)
√
1 + f ′(x)2dx .

Proof to begin on next slide...
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Derivation

Proof can be found on Google, but I'll derive it for the purpose of
understanding.

Recall how areas of 2D regions and volumes of solids of revolution were
approximated by thin rectangles and circular disks/washers/cylindrical
shells.

More relevant is the arclength formula, where curves were approximated by
short segments.
For surface area we'll use the lateral areas of frustums, as shown in the
diagram below from the internet:
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Proof, cont'd.

Putting that picture into words. . . we'll need the following formula:

Lemma

A frustum with radii r1, r2 and slant height ` has lateral (non-base) SA

π(r1 + r2)`.

Subproof (or more accurately, part thereof)

We will make full use of `unrolling'.
WLOG r1 < r2; when the two radii are equal unrolling gives a rectangle,
and when r1 > r2 we can simply swap the radii. Now we unroll to get a
annulal sector which is easier to compute.

By similarity/homothety the inner and outer radii are rinner = r1`/(r2 − r1)
and router = r2`/(r2 − r1) respectively. Next, the outer circumference of the
sector is 2πr2, so the annulal angle (in radians) is

2πr2
router

=
2πr2

r2`/(r2 − r1)
= 2π

r2 − r1
`

.
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Finishing the lemma proof

Subproof cont'd.

Now we �nish by computing

Lateral SA =
1

2
(r2outer − r2inner )2π

r2 − r1
`

= π

(
r22 − r21

)
`2

(r2 − r1)2
r2 − r1
`

= π(r1 + r2)`

as desired.
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Finishing the proof

From that, each small frustum with radii at x0 with width ∆ has

Lateral SA = 2π
f (x0) + f (x0 + ∆)

2

√
(f (x0 + ∆)− f (x0))2 + ∆2.

Now, recall that when ∆ gets small, f (x0 + ∆)− f (x0) ≈ ∆ · f ′(x0), and
f (x0)+f (x0+∆)

2
is the familiar trapezoid-rule area. Thus we may simplify the

above as
· · · ≈ 2πf (x0)

√
f ′(x0)2 + 1∆

so the exact area is the integral

2π

∫ b

a

f (x)
√

f ′(x)2 + 1dx

as desired. �

Neal Yan Gabriel's very long instrument 10 / 15



Basic properties Surface area Awkward rates Conclusion

Plugging in formula

SA of the horn

Plugging in f (x) = 1/x , x ∈ [1,∞) into the surface area formula. . . observe
that f ′(x) = −1/x2. Then

SA = 2π

∫ ∞
1

1

x

√
1 + 1/x4dx .

Now, we can't directly evaluate this integral by antidi�erentiating the
integrand, but we can still show that it's nonexistent: bound√
1 + 1/x4 > 1, so that

2π

∫ ∞
1

1

x

√
1 + 1/x4dx > 2π

∫ ∞
1

dx

x
,

which is easily seen to be nonexistent/divergent.

Remark

Power series could be used for antidi�erentiation, but no need. . .
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Maverick remarks

Remark 1

Yes, I know that the AP Calc BC curriculum only includes volume
formula(s) for solids of revolution, but I think the surface area formula is
important to know as well; there's no reason it's not eligible for the �nal
project, seeing as it's derived from single-variable methods anyway.

Just because an irrelevant organization called the College Board renders it
useless on its tests doesn't mean we shouldn't learn it as part of
single-variable. . .

Remark 2

OK, time to include some rate exercise to �t the project requirements. . . I
think I've already told the teacher about the surface-area part of this
project. . .
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Expanding the horn

OK everyone, time to pull out the (graphing) calc.

Exercise

Suppose that we cut o� the horn at some value to make itsquare �nite, say
x = 10. Now, the radius of the horn (y) is uniformly increased at a rate of
1 from the original y = 1/x . What is the rate of change of the surface
area immediately after the expanding begins?

I claim that this is not computable manually. In the computations to come
we will come across a �nite integral for which the integrand has no
elementary antiderivative.

Remark

It is important to know that the above has in�nite exceptions. For instance∫ ∞
−∞

e−x2dx =
√
π.

Visualize this as the horn `blowing up'.
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Solution to the exercise

Application of related rates. Formalize by let volume be V , time be t ,so
that c is some function of t.
Then dy/dx ≡ −1/x2, leading to

SA = 2π

∫
10

1

(
1

x
+ c

)√
1 + (1/x2)2 dx

= 2π

[
c

∫
10

1

√
1 + 1/x4dx +

∫
10

1

1

x

√
1 + 1/x4dx

]
.

Di�erentiating the above wrt c gives a rate of

dSA

dc
=

∫
10

1

√
1 + 1/x4dx

which is proportional to the SA (and c)! Let the above integral be C ; then
we get

dSA

dt

∣∣∣∣
c=0

=
dSA

dc

∣∣∣∣
c=0

dc

dt

∣∣∣∣
c=0

= C · 1 = C .

Finish by computing C ≈ 9.513 via graphing calc.
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