Desargues and his meme

Neal + Krishna (feat. Tiger)

July 13, 2023

We are lazy, so here is a problem compilation, one of the shortest handouts of all time.

Very brief blurb

Desargues was a sinner, a mastermind spinner, Mathematical genius, his thoughts got much bigger.
With lines and planes, he played his wicked game, Geometry was his realm, and he conquered the terrain.

He twisted and turned, in his mathematical maze, Proving the theorems that left others amazed.
His mind was a canvas, where concepts would collide,
Creating new dimensions, in which truths would reside.

From perspective, he derived his duality,
Projective geometry, his art with clarity.
He saw the world in a different light, Unveiling hidden symmetries, day and night.

Desargues danced with angels and demons alike, Challenging the norms, never afraid to strike.
His sins were his passion, his rebellion was clear, In a world of shapes and numbers, he had no fear.

So raise a toast to Desargues, the sinner with a vision, Whose mathematical legacy defies all derision.
For in his wickedness, he found the truth,
And left us with a geometric marvel, in our youth.

- ChatGPT '23

40 Acknowledgement

Eric Shen for teaching me this black magic and its very interesting applications. Thanks so much Eric! - Neal

1 Opening examples

Example 1 (OMMC Main 2023/24 by Tiger)

Define acute $\triangle A B C$ with circumcenter O. The circumcircle of $\triangle A B O$ meets segment $B C$ at $D \neq B$, segment $A C$ at $F \neq A$, and the Euler line of $\triangle A B C$ at $P \neq O$. The circumcircle of $\triangle A C O$ meets segment $B C$ at $E \neq C$. Let $\overline{B C}$ and $\overline{F P}$ intersect at X, with C between B and X. If $B D=13, E C=8$, and $C X=27$, find $D E$.

2 Problems

Approximately increasing difficulty....
Problem 1 (USA TST 2004/4). Let $A B C$ be a triangle. Choose a point D in its interior. Let ω_{1} be a circle passing through B and D and ω_{2} be a circle passing through C and D so that the other point of intersection of the two circles lies on $A D$. Let ω_{1} and ω_{2} intersect side $B C$ at E and F, respectively. Denote by X the intersection of $D F, A B$ and Y the intersection of $D E, A C$. Show that $X Y \| B C$.

Problem 2 (CJMO 2021/1). Let $A B C$ be an acute triangle, and let the feet of the altitudes from A, B, C to $\overline{B C}, \overline{C A}, \overline{A B}$ be D, E, F, respectively. Points $X \neq F$ and $Y \neq E$ lie on lines $C F$ and $B E$ respectively such that $\angle X A D=\angle D A B$ and $\angle Y A D=\angle D A C$. Prove that X, D, Y are collinear.

Problem 3 (IGO 2018/I5). Suppose that $A B C D$ is a parallelogram such that $\angle D A C=90^{\circ}$. Let H be the foot of perpendicular from A to $D C$, also let P be a point along the line $A C$ such that the line $P D$ is tangent to the circumcircle of the triangle $A B D$. Prove that $\angle P B A=\angle D B H$.

Problem 4 (Serbia 2017/6). Let k be the circumcircle of $\triangle A B C$ and let k_{a} be A-excircle .Let the two common tangents of k, k_{a} cut $B C$ in P, Q. Prove that $\angle P A B=\angle C A Q$.

Problem 5 (Taiwan TST 2014/3/3). Let $A B C$ be a triangle with circumcircle Γ and let M be an arbitrary point on Γ. Suppose the tangents from M to the incircle of $\triangle A B C$ intersect $\overline{B C}$ at two distinct points X_{1} and X_{2}. Prove that the circumcircle of triangle $M X_{1} X_{2}$ passes through the tangency point of the A-mixtilinear incircle with Γ.

Problem 6 (USA TST 2018/5 (by Evan)). Let $A B C D$ be a convex cyclic quadrilateral which is not a kite, but whose diagonals are perpendicular and meet at H. Denote by M and N the midpoints of $\overline{B C}$ and $\overline{C D}$. Rays $M H$ and $N H$ meet $\overline{A D}$ and $\overline{A B}$ at S and T, respectively. Prove that there exists a point E, lying outside quadrilateral $A B C D$, such that

- ray $E H$ bisects both angles $\angle B E S, \angle T E D$, and
- $\angle B E N=\angle M E D$.

Problem 7 (IMO 2019/2). In triangle $A B C$, point A_{1} lies on side $B C$ and point B_{1} lies on side $A C$. Let P and Q be points on segments $A A_{1}$ and $B B_{1}$, respectively, such that $P Q$ is parallel to $A B$. Let P_{1} be a point on line $P B_{1}$, such that B_{1} lies strictly between P and P_{1}, and $\angle P P_{1} C=\angle B A C$. Similarly, let Q_{1} be the point on line $Q A_{1}$, such that A_{1} lies strictly between Q and Q_{1}, and $\angle C Q_{1} Q=\angle C B A$.
Prove that points P, Q, P_{1}, and Q_{1} are concyclic.
Problem 8 (MOP HW \#21). In acute scalene $\triangle A B C$ with circumcenter O, orthocenter H, Kosnita point $X_{54}=K$, define $P=(H O) \cap(B O C), Q$ be the foot from line onto $A O$. Prove that P, Q, K are collinear. (The Kosnita point is the point at which the line through A and the circumcenter of $\triangle B O C$ and the other two analogous lines concur; it is the isogonal conjugate of the nine-point center.

Problem 9 (Shortlist 2012/G8). Let $A B C$ be a triangle with circumcircle ω and ℓ a line without common points with ω. Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines $B C, C A, A B$ intersect ℓ at the points X, Y, Z different from P. Prove that the circumcircles of the triangles $A X P, B Y P$ and $C Z P$ have a common point different from P or are mutually tangent at P.

Problem 10 (Shortlist 2021/G8). Let $A B C$ be a triangle with circumcircle ω and let Ω_{A} be the A-excircle. Let X and Y be the intersection points of ω and Ω_{A}. Let P and Q be the projections of A onto the tangent lines to Ω_{A} at X and Y respectively. The tangent line at P to the circumcircle of the triangle $A P X$ intersects the tangent line at Q to the circumcircle of the triangle $A Q Y$ at a point R. Prove that $\overline{A R} \perp \overline{B C}$.

2.1 Addendum

Problem 11 (USAMO 2012/5). Let P be a point in the plane of $\triangle A B C$, and γ a line passing through P. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points where the reflections of lines $P A, P B, P C$ with respect to γ intersect lines $B C, A C, A B$ respectively. Prove that $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear.

Problem 12 (Shortlist 2022/G8). Let $A A^{\prime} B C C^{\prime} B^{\prime}$ be a convex cyclic hexagon such that $A C$ is tangent to the incircle of the triangle $A^{\prime} B^{\prime} C^{\prime}$, and $A^{\prime} C^{\prime}$ is tangent to the incircle of the triangle $A B C$. Let the lines $A B$ and $A^{\prime} B^{\prime}$ meet at X and let the lines $B C$ and $B^{\prime} C^{\prime}$ meet at Y.
Prove that if $X B Y B^{\prime}$ is a convex quadrilateral, then it has an incircle.
Problem 13 (China 2020/2). Let ABC be a triangle, and let the bisector of $\angle A$ intersect $\overline{B C}$ at D. Point P lies on line $A D$ such that P, A, D are collinear in that order. Suppose $\overline{P Q}$ is tangent to $(A B D)$ at $Q, \overline{P R}$ is tangent to $(A C D)$ at R, and Q and R lie on opposite sides of line $A D$. Let $K=B R \cap C Q$. Prove that if the line through K parallel to $B C$ intersects lines $Q D, A D, R D$ at E, L, F, respectively, then $E L=K F$.

42.1.1 Are these (D)DIT?

I have not done them, but there are apparently (D)DIT solutions to the below problems.
Problem 14 (Shortlist 2022/G3). Let $A B C D$ be a cyclic quadrilateral. Assume that the points Q, A, B, P are collinear in this order, in such a way that the line $A C$ is tangent to the circle $A D Q$, and the line $B D$ is tangent to the circle $B C P$. Let M and N be the midpoints of segments $B C$ and $A D$, respectively. Prove that the following three lines are concurrent: line $C D$, the tangent of circle $A N Q$ at point A, and the tangent to circle $B M P$ at point B.

Problem 15 (TSTST 2023/6). Let $A B C$ be a scalene triangle and let P and Q be two distinct points in its interior. Suppose that the angle bisectors of $\angle P A Q, \angle P B Q$, and $\angle P C Q$ are the altitudes of triangle $A B C$. Prove that the midpoint of $\overline{P Q}$ lies on the Euler line of $A B C$. (the author was splashed again :skull:)

